An Introduction to Elixir

April 2020 - Mike Zornek

coaaner”
————-—
—————

-ow

//mikezornek.com

http

http://mikezornek.com

Elixir is a dynamic, functional language designed for
building scalable and maintainable applications. Elixir
leverages the Erlang VM, often called the BEAM,
which is known for running low-latency, distributed
and fault-tolerant systems.

N

Lo

..‘_,

/ Joe Armstrong
? Creator of Erlang

Robert Virding 4 Mike Williams

Creator of Erlang 47 Creator of Erlan

—

> YouTube Search o

>

M o) 9:05/11:31 B & (= O]

Erlang: The Movie AUTOPLAY

113,329 views * May 3, 2012 ifp 1.2K "The Mess We're In" by Joe
e s Armstrong

dynamic. functional language
scalable malintainable

low-latency. distributed
fault-tolerant

* Code Expectations

Functional Language

defmodule Greeter do
def hello(name) do
"Hello, " <> name
end
end

1ex> Greeter.hello("Sean")

"Hello, Sean”

Other Languages
baz(new function(other function())

Elixir’'s Pipe Operator
other function() |> new function() |> baz()

iex> String.split("Elixir rocks")
["Elixir", "rocks"]

iex> "Elixir rocks" |> String.split()
["Elixir", "rocks"]

iex> String.split("bread;milk;eggs", ";")
[llbreadH, llmilkll, lleggsll]

1ex> "bread;milk;eggs"”
|> String.upcase()
|> String.split(";")

["BREAD", "MILK", "EGGS"]

No Strict Typing

defmodule Greeter do
def hello(name) do
"Hello, " <> name
end
end

1ex(3)> Greeter.hello(6)

** (ArgumentError) argument error
:erlang.byte size(6)
iex:3: Greeter.hello/1

1ex(3)> Greeter.hello(true)

** (ArgumentError) argument error
cerlang.byte size(true)
iex:3: Greeter.hello/1

defmodule Greeter do

@spec hello(String.t()) :: String.t()
def hello(name) do

"Hello, " <> name
end

end

** (CompileError) greeter.ex:8: undefined function hello/1
hello(6)

ERLANG

Dialyzer
Reference Manual
Version 4.1.1

e User's Guide

o Reference Manual
e Release Notes

e PDF

e TOp

e Expand All
e Contract All

Table of Contents

£ dialyzer

D Top of manual page
3 format_warning/1

D) format_warning/2
3 gui/0

D) gui/i

dialyzer

Module

dialyzer
Module Summary

Dialyzer, a DIscrepancy AnaLYZer for ERlang programs.

Description

Dialyzer is a static analysis tool that identifies software discrepancies, such as definite
type errors, code that has become dead or unreachable because of programming
error, and unnecessary tests, in single Erlang modules or entire (sets of) applications.

Dialyzer starts its analysis from either debug-compiled BEAM bytecode or from Erlang
source code. The file and line number of a discrepancy is reported along with an
indication of what the discrepancy is about. Dialyzer bases its analysis on the concept
of success typings, which allows for sound warnings (no false positives).

Using Dialyzer from the Command Line

Dialyzer has a command-line version for automated use. This section provides a brief
description of the options. The same information can be obtained by writing the

following in a shell:

e m'] oo - an Tam N o

Pattern Matching

Algebra

10 = x * 2

1ex(5)> x
1
1ex(6)> 1
1

1ex(5)> x

1

1ex(6)> 1

1

iex(7)> 2 = X

** (MatchError) no match of right hand side value:

1ex(7)>

1

1ex(7)> 3 =y
** (CompileError) iex:7: undefined function y/0

Tuples

1ex> {:0k, value} = {:0k, "Successful!"}

{:0k, "Successful!"}

1ex> value

"Successful!”

1ex> {:0k, value} = {:error}

** (MatchError) no match of right hand side value:

{:error}

Pattern Matching

Metaprogramming

defmodule Friends.Person do
use Ecto.Schema

schema "people" do
field :first name, :string
field :last name, :string
field :age, :integer

end

end

Scalable

Process

&k Mailbox

Process A Process B

8 Mailbox) 8 Mailbox
Messages

defmodule Example do
def listen do
receive do
{:0k, "coffee"} -> IO.puts("Coffee time!")
{:0k, "tea"} -> IO.puts("Tea, Earl Gray, Hot.")
end

listen()
end
end

lex> pid = spawn(Example, :listen, [])
#PID<0.108.0>

1ex> send(pid, {:0k, "coffee'"})
Coffee time!
{:0k, "coffee"}

1ex> send(pid, :0Kk)
: 0k

CPU

OS Thread

scheduler

-
[

=S

&

Process

CPU

OS process

BEAM

OS Thread

scheduler

-
[

=S

v

&

Process

CPU

OS Thread

scheduler

-
[

=S

v

&

Process

OS Thread

scheduler

-
[

=S

v

&

Process

v

Server

CPU CPU CPU

CPU CPU CPU

BEAM

Fault-Tolerant

Supervisor

Supervisor

Supervisor

: =N

Process

Supervisor

Supervisor

Supervisor

Process

Supervisor

: =N

Process

Low-Latency

The Erlangelist

(not only) Erlang related musings

Hi, I'm Sasa Juric, a software developer with many years of professional experience in programming of web
and desktop applications using various languages, such as Elixir, Erlang, Ruby, JavaScript, C# and C++.
I'm also the author of the Elixir in Action book. In this blog you can read about Elixir, Erlang, and other
programming related topics. You can subscribe to the feed, follow me on Twitter or fork me on GitHub.

Observing low latency in Phoenix with

wrk
2016-06-12

Recently there were a couple of questions on Elixir Forum about observed
performance of a simple Phoenix based server (see here for example). People
reported some unspectacular numbers, such as a throughput of only a few
thousand requests per second and a latency in the area of a few tens of
milliseconds.

While such results are decent, a simple server should be able to give us better
numbers. In this post I'll try to demonstrate how you can easily get some more
promising results. | should immediately note that this is going to be a shallow
experiment. | won't go into deeper analysis, and | won't deal with tuning of VM or
OS parameters. Instead, I'll just pick a few low-hanging fruits, and rig the load test
by providing the input which gives me good numbers. The point of this post is to
demonstrate that it's fairly easy to get (near) sub-ms latencies with a decent
throughput. Benching a more real-life like scenario is more useful, but also requires

Posts

Periodic jobs

Rethinking app env

To spawn, or not to spawn?
Reducing the maximum latency
Low latency in Phoenix
Phoenix is modular

Driving Phoenix sockets

Elixir 1.2 and Elixir in Action
Open-sourcing Erlangelist
Outside Elixir

Optimizing with Elixir macros
Beyond Task.Async

Speaking at ElixirConf EU
Conway's Game of Life
Understanding macros, part 6
Understanding macros, part 5
Understanding macros, part 4

[1slogsdon / language-web-shootout Owatch 1 KsStar 1 YFork 0
<> Code (1) Issues 0 1) Pull requests 0 2 Actions 'l| Projects 0 UsSecurity L1 Insights

Web shootout between some recently used languages

-O- 25 commits ¥ 1 branch @ 0 packages O O releases 42 1 contributor sis MIT
0 O N

Branch: master » New pull request Find file Clone or download ~

slogsdon adding lua Latest commit acb9618 on Oct 12, 2014
BB clojure clojure: adding http-kit option 6 years ago
B common-lisp adding common lisp 6 years ago
il d adding d 6 years ago
B elixir removing project readmes 6 years ago
BB erlang formatting. first set of results. readme work 6 years ago
B go formatting. first set of results. readme work 6 years ago
B haskell haskell: update to 7.8.3 6 years ago

B lua adding lua 6 years ago

Maintainable

O ® nonode@nohost

System Load Charts Memory All... Alejelllecziilontsi s Processes Table Viewer Trace Overv...

Elixir.KV.Bucket.Supervisor <0.181.0>

elixir

eX <0.110.0> <0.111.0> <0.112.0>
kernel

Elixir.KV.Registry
Kv

logger
mix

S 1ex =S mix
1ex(1)> :o0bserver.start ()

[] elixir-lang / elixir

<> Code Issues 16 Pull requests 1 Actions Wiki
Releases

© Tags

v1.10.2

®onFeb 26 -0 0745083 [&) Zip &) tar.gz E) Notes <P Downloads
v1.10.1
M onFeb10 -0 51c95b6 [:)zip [Z) tar.gz E] Notes &> Downloads

v1.10.0

@ on Jan 27 -O- 5bd7a%90 [

Zip i) tar.gz

i)

Notes (P Downloads

v1.10.0-rc.0

(MonJan7 -0 105770cC @ Zip @ tar.gz @ Notes < Downloads

w21 O

Security

® Watch

Insights

739

W Star

16.7k

¥ Fork

2.4k

hex Packages Pricing Docs Login

[he package manager for the erlang ecosysterm

|Find packages Q

Using with Elixir Using with Erlang

Specify your Mix dependencies as two- Download rebar3, put it in your PATH
item tuples like {:plug, "~> 1.1.0"} and give it executable permissions. Now

in your dependency list, Elixir will ask if you can specify Hex dependencies in your
you want to install Hex if you haven't rebar.config like {deps, [hackney]}.

already.

& GETTING STARTED @ PUBLISH PACKAGES 0y PRIVATE PACKAGES

Fetch dependencies from Hex without Create an account and follow the publishing Publish private packages by creating an
creating an account. Hex is usable out of the guide. Your package will be immediately organization. Your private packages will get
box in Elixir with Mix and in Erlang with available to all Elixir and Erlang users and the the same features as public packages such as

Elixir
v1.10.2 v

-/

PAGES
MODULES

APl Reference
Compatibility and Deprecations
Library Guidelines
Naming Conventions
Top
Casing
Underscore (foo)
Trailing bang (foo!)
Trailing question mark (foo?)
is_ prefix (is_foo)
Special names
Operators
Patterns and Guards
Syntax reference
Typespecs
Unicode Syntax

Writing Documentation

Naming Conventions

This document covers some naming conventions in Elixir code, from casing to punctuation characters.

Casing

Elixir developers must use snake_case when defining variables, function names, module attributes, and
the like:

some_map = %{this_is_a_key: "and a value"}

1s_map(some_map)

Aliases, commonly used as module names, are an exception as they must be capitalized and written in
CamelCase , like OptionParser . For aliases, capital letters are kept in acronyms, like ExUnit.CaptureIO or
Mix.SCM.

Atoms can be written either in :snake_case or :CamelCase , although the convention is to use the snake
case version throughout Elixir.

Generally speaking, filenames follow the snake_case convention of the module they define. For example,
MyApp should be defined inside the my_app.ex file. However, this is only a convention. At the end of the
day, any filename can be used as they do not affect the compiled code in any way.

Underscore (_foo)

Elixir relies on underscores in different situations.

Elixr 682% 1

Notable Projects

Building web applications using Phoenix.
Working with databases using Ecto.
Assemble data processing pipelines with Broadway.

Crafting GraphQL APls using Absinthe.

Deploying embedded software using Nerves.

Elixir Language Website Guide
https://elixir-lang.org/getting-started/introduction.html

Elixir School
https.//elixirschool.com/en/

Elixir in Action (Book)
https://www.manning.com/books/elixir-in-action

The Pragmatic Studio (Videos)
https://pragmaticstudio.com/elixir

ElixirConf
https://www.youtube.com/channel/UC0I2QTnO1P2iph-86HHIIMQ/videos

https://elixir-lang.org/getting-started/introduction.html
https://www.manning.com/books/elixir-in-action
https://pragmaticstudio.com/elixir
https://www.youtube.com/channel/UC0l2QTnO1P2iph-86HHilMQ/videos

Thanks!

Avalilable For Hire:

http:/mikezornek.com/for-hire/

Contact:

@zorn on Micro.Blog + Twitter

http://mikezornek.com/for-hire/

